3.260 \(\int \frac{\sqrt{e \cos (c+d x)}}{(a+a \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=153 \[ -\frac{2 (e \cos (c+d x))^{3/2}}{15 d e \left (a^3 \sin (c+d x)+a^3\right )}-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{15 a^3 d \sqrt{\cos (c+d x)}}-\frac{2 (e \cos (c+d x))^{3/2}}{15 a d e (a \sin (c+d x)+a)^2}-\frac{2 (e \cos (c+d x))^{3/2}}{9 d e (a \sin (c+d x)+a)^3} \]

[Out]

(-2*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(15*a^3*d*Sqrt[Cos[c + d*x]]) - (2*(e*Cos[c + d*x])^(3/2))
/(9*d*e*(a + a*Sin[c + d*x])^3) - (2*(e*Cos[c + d*x])^(3/2))/(15*a*d*e*(a + a*Sin[c + d*x])^2) - (2*(e*Cos[c +
 d*x])^(3/2))/(15*d*e*(a^3 + a^3*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.173375, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2681, 2683, 2640, 2639} \[ -\frac{2 (e \cos (c+d x))^{3/2}}{15 d e \left (a^3 \sin (c+d x)+a^3\right )}-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{15 a^3 d \sqrt{\cos (c+d x)}}-\frac{2 (e \cos (c+d x))^{3/2}}{15 a d e (a \sin (c+d x)+a)^2}-\frac{2 (e \cos (c+d x))^{3/2}}{9 d e (a \sin (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cos[c + d*x]]/(a + a*Sin[c + d*x])^3,x]

[Out]

(-2*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(15*a^3*d*Sqrt[Cos[c + d*x]]) - (2*(e*Cos[c + d*x])^(3/2))
/(9*d*e*(a + a*Sin[c + d*x])^3) - (2*(e*Cos[c + d*x])^(3/2))/(15*a*d*e*(a + a*Sin[c + d*x])^2) - (2*(e*Cos[c +
 d*x])^(3/2))/(15*d*e*(a^3 + a^3*Sin[c + d*x]))

Rule 2681

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(2*m + p + 1)), x] + Dist[(m + p + 1)/(a*(2*m + p + 1)),
Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && IntegersQ[2*m, 2*p]

Rule 2683

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(g*Cos[e
 + f*x])^(p + 1))/(a*f*g*(p - 1)*(a + b*Sin[e + f*x])), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{e \cos (c+d x)}}{(a+a \sin (c+d x))^3} \, dx &=-\frac{2 (e \cos (c+d x))^{3/2}}{9 d e (a+a \sin (c+d x))^3}+\frac{\int \frac{\sqrt{e \cos (c+d x)}}{(a+a \sin (c+d x))^2} \, dx}{3 a}\\ &=-\frac{2 (e \cos (c+d x))^{3/2}}{9 d e (a+a \sin (c+d x))^3}-\frac{2 (e \cos (c+d x))^{3/2}}{15 a d e (a+a \sin (c+d x))^2}+\frac{\int \frac{\sqrt{e \cos (c+d x)}}{a+a \sin (c+d x)} \, dx}{15 a^2}\\ &=-\frac{2 (e \cos (c+d x))^{3/2}}{9 d e (a+a \sin (c+d x))^3}-\frac{2 (e \cos (c+d x))^{3/2}}{15 a d e (a+a \sin (c+d x))^2}-\frac{2 (e \cos (c+d x))^{3/2}}{15 d e \left (a^3+a^3 \sin (c+d x)\right )}-\frac{\int \sqrt{e \cos (c+d x)} \, dx}{15 a^3}\\ &=-\frac{2 (e \cos (c+d x))^{3/2}}{9 d e (a+a \sin (c+d x))^3}-\frac{2 (e \cos (c+d x))^{3/2}}{15 a d e (a+a \sin (c+d x))^2}-\frac{2 (e \cos (c+d x))^{3/2}}{15 d e \left (a^3+a^3 \sin (c+d x)\right )}-\frac{\sqrt{e \cos (c+d x)} \int \sqrt{\cos (c+d x)} \, dx}{15 a^3 \sqrt{\cos (c+d x)}}\\ &=-\frac{2 \sqrt{e \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{15 a^3 d \sqrt{\cos (c+d x)}}-\frac{2 (e \cos (c+d x))^{3/2}}{9 d e (a+a \sin (c+d x))^3}-\frac{2 (e \cos (c+d x))^{3/2}}{15 a d e (a+a \sin (c+d x))^2}-\frac{2 (e \cos (c+d x))^{3/2}}{15 d e \left (a^3+a^3 \sin (c+d x)\right )}\\ \end{align*}

Mathematica [C]  time = 0.0426006, size = 66, normalized size = 0.43 \[ -\frac{(e \cos (c+d x))^{3/2} \, _2F_1\left (\frac{3}{4},\frac{13}{4};\frac{7}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{6 \sqrt [4]{2} a^3 d e (\sin (c+d x)+1)^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cos[c + d*x]]/(a + a*Sin[c + d*x])^3,x]

[Out]

-((e*Cos[c + d*x])^(3/2)*Hypergeometric2F1[3/4, 13/4, 7/4, (1 - Sin[c + d*x])/2])/(6*2^(1/4)*a^3*d*e*(1 + Sin[
c + d*x])^(3/4))

________________________________________________________________________________________

Maple [B]  time = 2.585, size = 512, normalized size = 3.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^3,x)

[Out]

-2/45/(16*sin(1/2*d*x+1/2*c)^8-32*sin(1/2*d*x+1/2*c)^6+24*sin(1/2*d*x+1/2*c)^4-8*sin(1/2*d*x+1/2*c)^2+1)/a^3/s
in(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*(48*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^8-96*sin(1/2*d*x+1/2*c)^10*cos(1/2*d*x+1/2*
c)-96*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(
1/2*d*x+1/2*c)^6+192*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+72*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1
/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-152*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*
x+1/2*c)-24*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*sin(1/2*d*x+1/2*c)^2+56*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-36*sin(1/2*d*x+1/2*c)^5+3*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-48*sin(1/2*d*x+1/2*c)^2*cos(
1/2*d*x+1/2*c)+36*sin(1/2*d*x+1/2*c)^3+11*sin(1/2*d*x+1/2*c))*e/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \cos \left (d x + c\right )}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate(sqrt(e*cos(d*x + c))/(a*sin(d*x + c) + a)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{e \cos \left (d x + c\right )}}{3 \, a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3} +{\left (a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3}\right )} \sin \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

integral(-sqrt(e*cos(d*x + c))/(3*a^3*cos(d*x + c)^2 - 4*a^3 + (a^3*cos(d*x + c)^2 - 4*a^3)*sin(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(1/2)/(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \cos \left (d x + c\right )}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(sqrt(e*cos(d*x + c))/(a*sin(d*x + c) + a)^3, x)